

S1000D User Forum 2010 September 27-30, 2010, Aerostar hotel, Moscow, Russia

Track1: ILS implementation and experience

S3000L - Overview

by

Peter Zimmermann

Cassidian Air Systems, Customer Support

(on behalf of the S3000L European chair Peter Eichmueller)

S3000L

International procedure specification for Logistics Support Analysis (LSA)

Content

Introduction

Logistic Support Analysis (LSA) in the context of Integrated Logistic Support (ILS)

- S3000L Project progress until today
- S3000L Overall content
- > S3000L Some aspects from **selected chapters**
- S3000L/S1003X Overview of data model and data exchange

> SUMMARY

Significance of logistic support

Feedback from customer

(original German citation from KG UKdoLw) "Wegen des hohen Anstiegs der Materialerhaltungskosten müssen heute logistische Forderungen bezüglich Zuverlässigkeit, Wartbarkeit, Prüfbarkeit und Betriebskosten <u>gleichwertig</u> neben den operationellen, technischen und wirtschaftlichen Forderungen stehen".

"Because of the dramatic increase of support costs we have to consider the **logistic requirements** for reliability, maintainability and in service costs in the same way and <u>on the same level</u> as the **operational, technical and** economical requirements".

LSA - Logistic Support Analysis Definition

Logistic Support Analysis (LSA) is an extended **process** to analyze carefully all elements of a complex technical system to guarantee optimal logistic support during the in service phase.

During an LSA process three main working aims can be identified:

- Influence on design to optimize the technical system for proper logistic support
- <u>Optimization</u> of the logistic resources (personnel, support equipment, materiel, facilities, software support, training, etc.)
- Establishment of the **basic information** for the subordinated logistic disciplines, which create the logistic end products

LSA is not to be considered an own logistic discipline (eg like technical documentation, material support or training)

ILS - Integrated Logistic Support

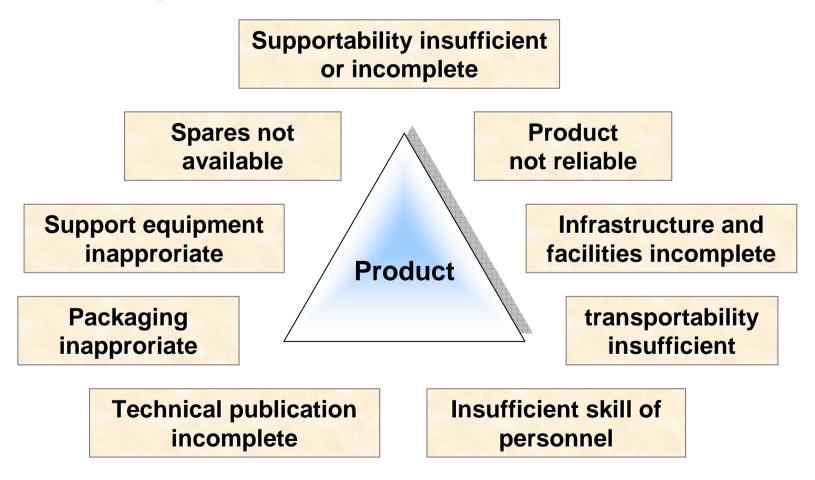
Definition / position of LSA process

Integrated Logistic Support (ILS) is a <u>management method</u> to integrate and manage the elements of logistic support

- Logistic analysis tasks to optimize the design from the logistic point of view (product breakdown, maintainability, testability, reliability, scheduled maintenance analysis, etc...)
- Materiel Support (spares, consumables)
- Technical Documentation
- Support Equipment
- Personnel requirements and training / training facilities
- Facilities
- Software Support

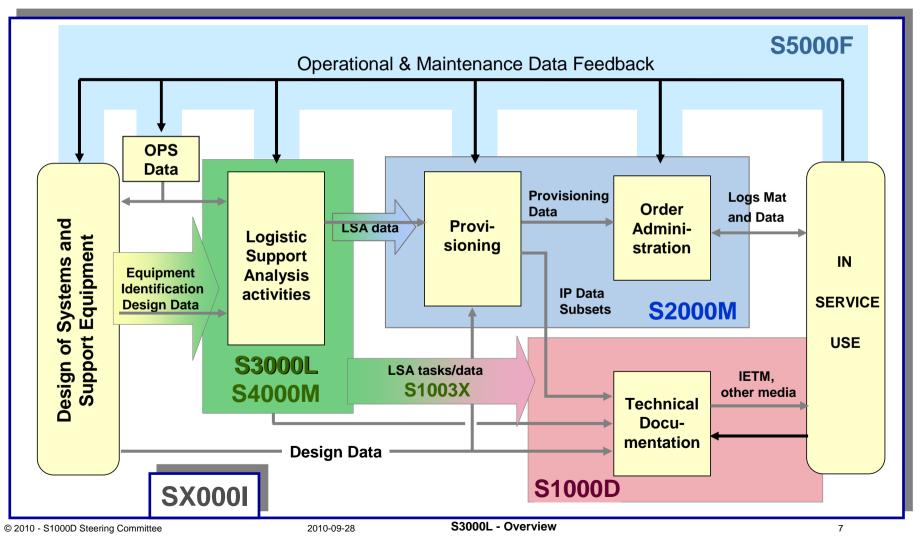
during <u>all phases</u> of system design & development and in service phase.

The <u>LSA process</u> is the powerful management tool to support the achievement of the the aims of Integrated Logistic Support.

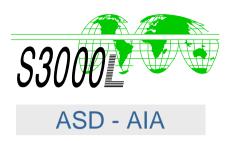


ILS - Integrated Logistic Support

Risk of non-integrated approach



Aquisition Logistics main Business Processes


Relations to the ASD/AIA ILS Specification Suite

... one of the starting points of the S3000L working group 2006 in Munich

S3000L Logistic Support Analysis

The specification S3000L is designed to cover the activities and requirements governing the **establishment of the LSA process**

The concept of this spe 01/2006	cification was originated in 2006. Inaugural meeting in Brussels
01/2000	maugurar meeting in Drussels
2009-06-24	Publication of S3000L, Issue 0.1, in Brussels
10/2009	End of official commenting phase for organizations and companies
11/2009	Clarification of comments
04/2010	Finalization of issue 1.0
05/2010	Publication of S3000L, Issue 1.0
11/2010	Establishment of S3000L Steering Committee

S3000L

Logistic Support Analysis -Project organization

US and European Aerospace Industry are represented each by a chairman of the entire working group

Both are supported by **work package managers** within the core team

A common ASD/AIA Advisory Board monitors the project

S3000L Table of content (1)

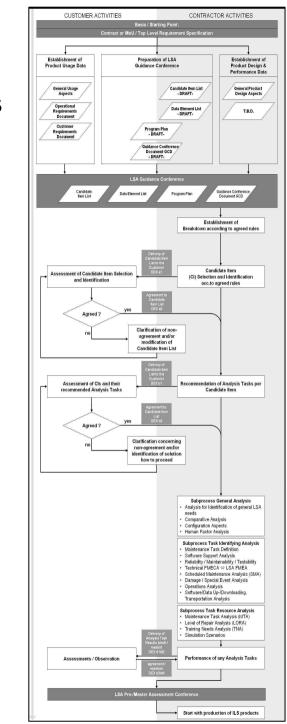
Nr	Chapter	Responsible
01	Introduction	Cassidian Air Systems
02	General Requirements	BOEING
03	LSA Business Process	Cassidian Air Systems
04	Configuration Management	EADS CASA
05	Influence on Design / RMT Interface	SAAB
06	Human Factors Analysis	BOEING / Cassidian Air Systems
07	LSA FMEA	EUROCOPTER
80	Damage and Event Analysis	DASSAULT
09	Logistics Related Operations Analysis	Cassidian Air Systems
10	Scheduled Maintenance Analysis	Cassidian Air Systems
11	Level of Repair Analysis	LOGSA
12	Maintenance Task Analysis	Cassidian Air Systems

S3000L Table of content (2)

Nr	Chapter	Responsible
13	Software Support Analysis	Cassidian Air Systems
14	Life Cycle Costs Considerations	EADS CASA
15	Obsolescence Analysis	OCCAR
16	In Service Feedback	BOEING
17	Disposal	DASSAULT
18	Interrelation to other ASD Standards	Cassidian Air Systems / MTDTT
19	Data Model	SAAB
20	Data Exchange	SAAB
21	Terms, definitions and abbreviations	AGUSTA WESTLAND
22	Data element list	SAAB

Scope (from Chap 1)

S3000L is designed to cover all processes and requirements governing the performance of the LSA:


- It provides rules for the establishment of the product breakdown and for the selection of LSA candidate items.
- It describes type and methodology of performance of the specified analyses.
- It gives guidelines on how to process the results of the analysis tasks
- It covers the interface between LSA and the support engineering areas
- It covers the interface between LSA and the ILS functional areas

S3000L Chapter 3 - LSA Business Process

The business process - The heart of S3000L

- Establishment of Product Usage Data
- Establishment of Product Design & Performance Data
- LSA Guidance Conference
- Establishment of Breakdown according to agreed rules
- Candidate Item Selection
- Analysis activities for candidate items
- Customer Involvement
- LSA Review / Assessment Conference
- Starting Point / Interface to creation of ILS products



Technical/logistic analysis activities

List of potential analysis activities according to S3000L

- Analysis for identification of general LSA needs
- Comparative Analysis
- Human Factor Analysis

- RAMTS (Reliability, Availability, Maintainability, Testability and Safety Analysis)
- LSA FMEA (Logistic FMEA)
- Damage Analysis
- Special Event Analysis
- Scheduled Maintenance Analysis (S4000M, MSG-3, RCM)
- Operations Analysis (PHST)
- Software Support Analysis (SSA)
- Level of Repair Analysis (LORA)

Additionally LSA provides information for:

- Simulation of operational scenarios
- Training Needs Analysis (TNA)

event driven maintenance activities

early analysis activities

Analysis results are documented in the LSA database

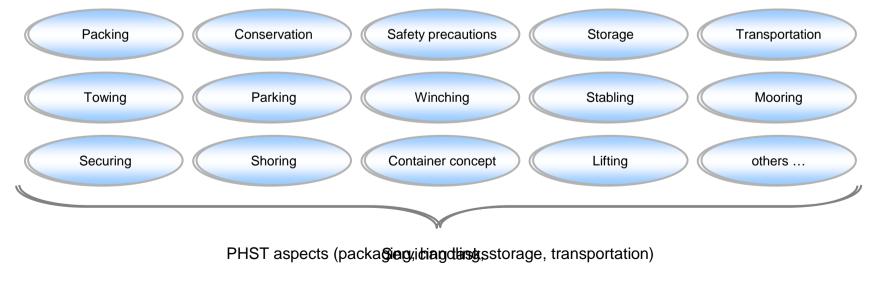
Logistic Support Analysis

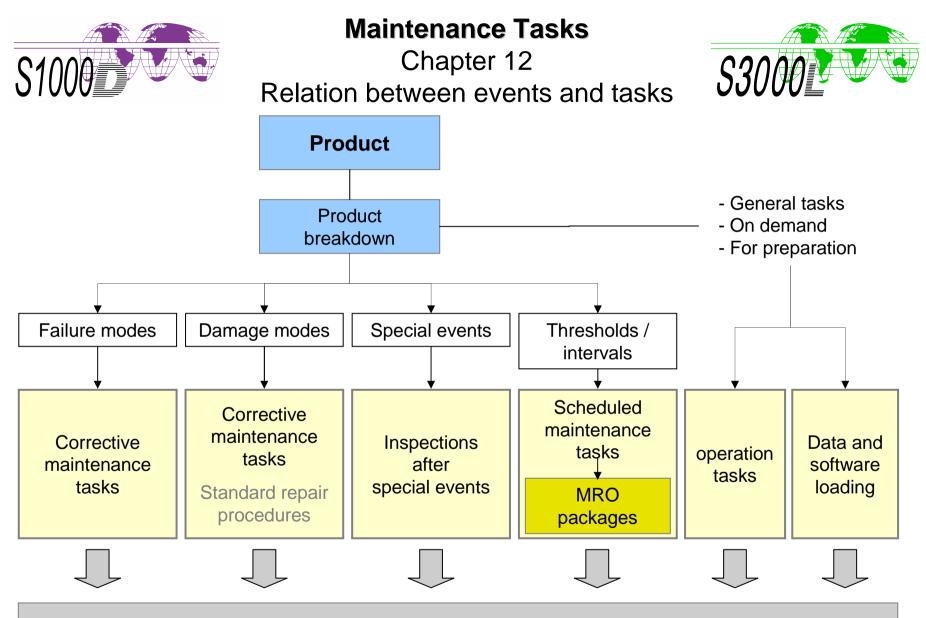
Logistic disciplines, which receive information from the LSA database

Event driven maintenance Chapter 7 to 10

All events which justify any maintenance activity must be considered. Additionally all relevant <u>operational</u> activities must be analyzed. These are covered in chapter 7 to 10:

- Chapter 7: **Failures** ⇒ LSA FMEA
- Chapter 8: **Damages** and **special events**
- Chapter 9: **Operational** activities
- Chapter 10: Scheduled Maintenance


Logistics Related Operations Analysis Chapter 9 - Purpose



Purpose:

Beside the activities concerning maintenance and repair of a product, there are **additional aspects concerning the operation and the handling** to be considered.

Logistic relevant operations are tasks, which can neither be assigned to the area of direct usage of a product (documented in operating instructions) nor to the area of maintenance (documented in a maintenance manual).

Maintenance Task Analysis

Maintenance Tasks

Chapter 12 Maintenance Task Analysis (MTA)

Task structure - How to document a task

Documentation of <u>supporting tasks</u> with the help of subtasks/working steps

Documentation of <u>rectifying tasks</u> with the help of referenced supporting tasks and additional subtasks / working steps, respectively

Integration of preconditions, pre-work and post-work

Brief narrative description

Subtask 1	Reference on: Fault location procedure	
Subtask 2	Remove cover 1 (opening 4 quick fasteners)	
Subtask 3	Reference on: Remove cover 2	
u	Korking step 1 Open 24 screws for removal of co Korking step 2 Remove cover plate Korking step 3 Remove sealing	
Subtask 4	Reference on: Remove equipment 401	
и	Norking step 2 Open safety screws \$01 and \$02 Norking step 3 Open attaching screws A01 to A0 Norking step 4 Remove equipment 401 from hou:	
Subtask 5	Reference on: Disassemble equipment 401	
	Nordiing step 1	
Subtask 6	Remove defective component 5	
Subtask 7	Install new component 5	
Subtask 8	Reference on: Assemble equipment 401	
Subtask 9	Reference on: Install equipment 401	
Subtask 10	Reference on: Test function of equipment 401	
Subtask 11	Reference on: Install cover 2	
2	Install cover 1	

Maintenance Tasks

Chapter 12 - Task resources

Task resources

The resources necessary to perform a maintenance tasks should be defined at the appropriate level within the task itself.

Generally, it should be possible to identify <u>when</u> a resource should be available within the sequence of the task. The resources can be (but are not limited to):

- Personnel and required training
- Material (spare parts and consumables)
- Support and test equipment
- Facilities and infrastructure
- Technical documentation
- IT support

Maintenance Tasks

Chapter 12 Additional aspects of task documentation

Task requirements - Additional aspects

The following aspects concerning the performance of any maintenance task are additionally covered by S3000L:

- Resources out of supporting task references
- Harmonization of support equipment and spare parts
- Task location aspects
- Product and system availability during maintenance performance
- Support solutions (task variants)
- Task duration and task frequency
- **Parallel activities** within maintenance tasks

Software Support

Chapter 13

Why to consider software in an LSA process?

Comparison of "flying" software in active weapon systems:

F4

nearly none (at first introduction)

Tornado

27 KLOC* (at first introduction)

* KLOC = KiloLines of Code Measurement base for amount of software

EF 2000 1600 KLOC

82 programmable computers interconnected via 8 network buses

© 2010 - S1000D Steering Committee

2010-09-28

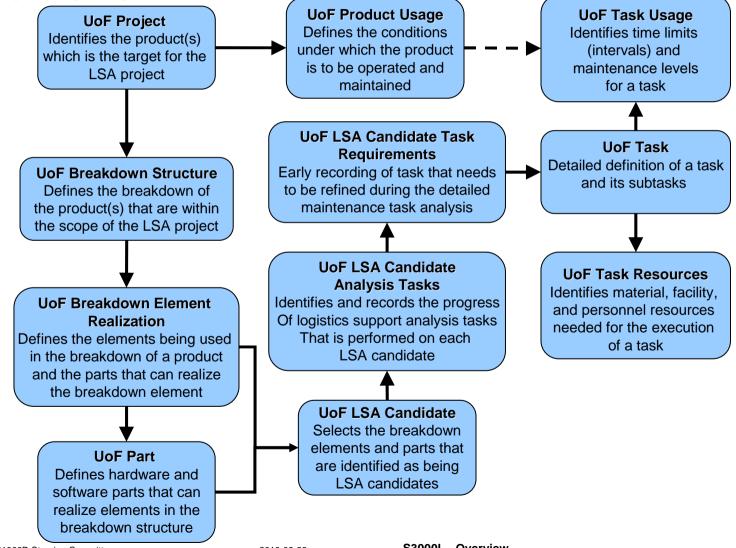
S3000L - Overview

Data model and data exchange

Chapter 19 Data elements and data model

Objective

- Describe a coherent S3000L data model and data element definitions for exchange of LSA data with related business processes
- Predicated on ISO 10303 AP239 Product Life Cycle Support (PLCS) data model
- Documents the data originated within the S3000L chapters
- Contains the data required to "build" task related S1000D data modules
- Basis for data exchange specifications **DEX1 A&D and DEX3 A&D**



Data model and data exchange

Chapter 19 - Data model overview

Model overview

Data model and data exchange

Chapter 20 - LSA data exchange (DEXs)

Objective

Define a coherent set of Aerospace and Defence Data Exchange Specifications (DEX) that supports the S3000L LSA process and its interaction with related business processes.

Scope

Exchange of product related data needed for support

Exchange of task data needed by eg Technical Publications and Maintenance Management

Aerospace and defence **product breakdown** for support

Aerospace and defence task set

S1003X - S3000L/S1000D interface specification

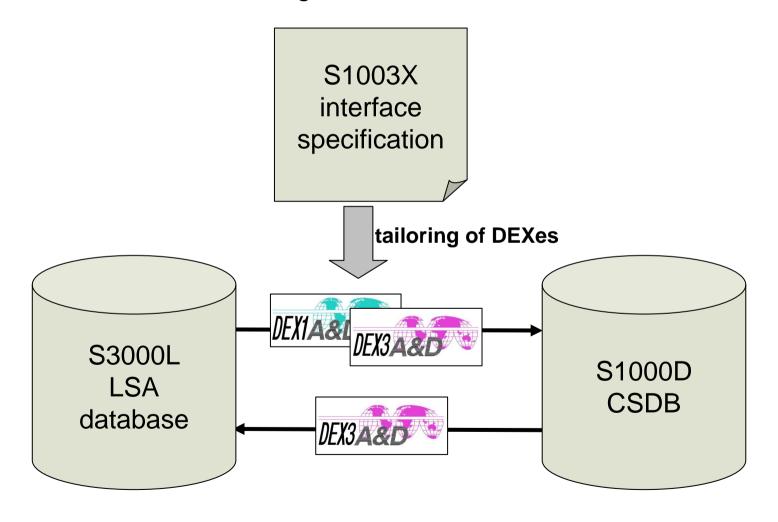
Issue 0.1 is actually reworked by the S3000L working group, issue 1.0 is planned for 09/2010

Purpose of S1003X:

Specification of the required LSA data to create S1000D data modules for the description of the maintenance of the LSA candidates

Content:

Mapping of S3000L data elements to S1000D 4.0 data elements and feedback of the generated data modules (related data module codes to the corresponding maintenance activities)



Data exchange

S1003X

Data exchange via DEX1 and DEX3 A&D

S3000L - Overview Summary

- ✓ S3000L gives a guideline how to establish a proper LSA process with special regard to the involvement of the customer
- S3000L describes the LSA business process from the very first activities in a conceptual project phase to the recommendation when to start with the production of the logistic end products
- ✓ S3000L gives a guideline how to create a suitable system breakdown and how to select the potential LSA candidates
- ✓ S3000L gives an overview of potential technical/logistic analysis activities and how the results can be documented within a logistic database (LSA database)
- S3000L gives a guideline how to document maintenance or operational tasks and the corresponding resources
- S3000L offers a data model based on ISO 10303 AP239 Product Life Cycle Support (PLCS) data model
- Additional specification S1003X offers data exchange baseline between S3000L and S1000D

S3000L - Overview Abbreviations

- A&D Aerospace & Defence
- **AGE** Aerospace Ground Equipment
- **AIA** Aerospace Industries Association of America
- **AP** Application Protocol
- **ASD** AeroSpace and Defence Industries Association of Europe
- **CSDB** Common Source DataBase
- **DEX** Data EXchange specification
- **FMEA** Failure Mode and Effects Analysis
- **ILS** Integrated Logistic Support
- **ISO** International Standards Organization
- IT Information Technology
- **KLOC** KiloLines Of Code
- LSA Logistic Support Analysis
- LORA Level Of Repair Analysis
- MRO Maintenace, Repair & Overhaul
- **MSG** Maintenance Steering Group

S3000L - Overview Abbreviations (2)

- **MTA** Maintenance Task Analysis
- MTDTT Maintenance Task Data Task Team
- **OPS** Operations
- PHST Packaging, Handling, Storage and Transportation
- PLCS Product Life-Cycle Standard
- **RAMTS** Reliability, Availability, Maintainability, Testability and Safety analysis
- **RCM** Reliability Centered Maintenance
- **SC** Steering Committee
- **SE** Support Equipment
- **SSA** Software Support Analysis
- **TNA** Training Needs Analysis
- TT Task Team
- **UoF** Unit of Functionality
- **UML** Unified Modeling Language

S1003

S3000L - Overview The End

Thank you for your staying power!

Questions?

Peter Zimmermann, Cassidian Air Systems Phone: +49-8459-81-80313 Fax: +49-8459-81-80312 Email: peter.e.zimmermann@cassidian.com

S3000L - Overview